Name: \qquad
Teacher: \qquad

DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN

 NeVVa CDLICentre for Distance Learning and Innovation

CHEMISTRY 2202

FINAL EXAMINATION
June 2013

Value: 80 Marks
Duration: 2 Hours

General Instructions

This examination consists of two parts. Both parts are contained in this booklet and further general instructions are provided on appropriate pages.

Part I - Selected Response (40 marks)

Select the letter of the correct response from those provided. EITHER shade the letter on your computer scorable card OR place the letter in the blank provided on your Multiple Choice Answer Sheet, whichever format is being used by your school for this exam. Do ALL questions in this section.

Part II - Constructed Response (40 marks)

Answer ALL questions fully and concisely in the space provided. Show all work and use correct units and significant digits in all final answers.

Student Checklist

The items below are your responsibility. Please ensure that they are completed.

- Write your name and teacher's name on the top of this page.
- Write your name, teacher's name, course name and number on the Part I answer sheet.
- Check the exam to see that there are no missing pages.

[^0]
Part I
 Selected Response
 Total Value: 40 Marks

1. Which isotope has 9 protons and 10 neutrons?
(A) fluorine-10
(B) fluorine-19
(C) neon-10
(D) neon-19
2. Which is defined as the amount of carbon atoms in a 12 g sample of carbon-12?
(A) Atomic mass
(B) Avogadro's number
(C) Limiting reagent
(D) Standard pressure
3. What is the number of hydrogen atoms in 2.3 moles of NH_{3} ?
(A) 6.9
(B) 9.2
(C) 1.4×10^{24}
(D) 4.2×10^{24}
4. The imaginary element "jensenium" has two known isotopes, as shown by the data below. What is the average atomic mass of jensenium?

Isotope	Percentage Abundance (\%)	Isotopic Atomic Mass (amu)
jensenium-272	80.00	271.9
jensenium-274	20.00	274.1

(A) 271.9 amu
(B) 272.3 amu
(C) 273.0 amu
(D) 273.7 amu
5. What is the molar mass of $\mathrm{CaSO}_{4} \bullet 2 \mathrm{H}_{2} \mathrm{O}$?
(A) $136.15 \mathrm{~g} / \mathrm{mol}$
(B) $154.17 \mathrm{~g} / \mathrm{mol}$
(C) $156.19 \mathrm{~g} / \mathrm{mol}$
(D) $172.19 \mathrm{~g} / \mathrm{mol}$
6. A 30.61 g sample of a compound with the chemical formula $\mathrm{NaClO}_{\mathrm{x}}$ contains 0.2500 mol . What is the identity of the compound?
(A) NaClO
(B) NaClO_{2}
(C) NaClO_{3}
(D) NaClO_{4}
7. What is the number of moles in 4.00 g of magnesium?
(A) 0.16
(B) 0.329
(C) 24.31
(D) 97.24
8. Which term represents the volume of one mole of gas at STP?
(A) molar mass
(B) molar volume
(C) percent composition
(D) percent volume
9. What is the percentage of potassium by mass in $\mathrm{K}_{2} \mathrm{~S}$?
(A) 29.08%
(B) 35.46%
(C) 58.16%
(D) 70.92%
10. A compound has an empirical formula of $\mathrm{CH}_{2} \mathrm{O}$ and a molar mass of $90.09 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula of the compound?
(A) $\mathrm{CH}_{2} \mathrm{O}$
(B) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
(C) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
(D) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$
11. Which has low solubility in water?
(A) CaSO_{3}
(B) KNO_{3}
(C) MgS
(D) NaCl
12. What are the units for molar concentration?
(A) g / L
(B) L
(C) mg
(D) $\mathrm{mol} / \mathrm{L}$
13. What mass of sodium is contained in a 250 g solution which has 7.0 ppm of sodium?
(A) $3.6 \times 10^{-5} \mathrm{~g}$
(B) $1.8 \times 10^{-3} \mathrm{~g}$
(C) $2.8 \times 10^{4} \mathrm{~g}$
(D) $1.7 \times 10^{9} \mathrm{~g}$
14. What is the final concentration when 1.60 L of $2.5 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}(\mathrm{aq})$ is diluted to a final volume of 4.80 L ?
(A) $0.13 \mathrm{~mol} / \mathrm{L}$
(B) $0.83 \mathrm{~mol} / \mathrm{L}$
(C) $1.2 \mathrm{~mol} / \mathrm{L}$
(D) $7.5 \mathrm{~mol} / \mathrm{L}$
15. The solubility of NaCl in water is $359 \mathrm{~g} / \mathrm{L}$ at $25^{\circ} \mathrm{C}$. Which term describes a NaCl solution which is $375 \mathrm{~g} / \mathrm{L}$ at $25^{\circ} \mathrm{C}$?
(A) concentrated
(B) dilute
(C) saturated
(D) supersaturated
16. Which is a volumetric flask?
(A)

(B)

(C)

(D)

17. Which term represents the amount of product obtained from a chemical reaction?
(A) actual yield
(B) excess reagent
(C) limiting reagent
(D) theoretical yield
18. For the reaction:

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

How many moles of carbon dioxide are produced when 4.2 mol of oxygen reacts with sufficient propane?
(A) 2.5
(B) 3.4
(C) 5.3
(D) 7.0
19. Which is a metallic solid at room temperature?
(A) CS_{2}
(B) CuZn
(C) LiCl
(D) SiO_{2}
20. How many valence electrons are in an atom of nitrogen, N ?
(A) 2
(B) 3
(C) 5
(D) 7
21. Which has a triple bond?
(A) Br_{2}
(B) H_{2}
(C) N_{2}
(D) O_{2}
22. Which Lewis diagram is correct?
(A)
$H: P:: P: H$
$\ddot{H} \quad \ddot{H}$
(B)

(C)

(D)

23. What is the shape around a central atom with 2 bonding groups and 2 lone pairs?
(A) bent (v -shaped)
(B) pyramidal
(C) tetrahedral
(D) trigonal planar
24. Which shape repeats in the macromolecule of Buckminsterfullerene?

(A) bent (v-shaped)
(B) pyramidal
(C) tetrahedral
(D) trigonal planar
25. Which contains London dispersion and dipole-dipole forces only?
(A) $\mathrm{C}_{2} \mathrm{H}_{2}$
(B) CO_{2}
(C) $\mathrm{H}_{2} \mathrm{CO}$
(D) NH_{3}
26. Which is ranked from lowest to highest bond polarity?
(A) $\mathrm{H}-\mathrm{F} \rightarrow \mathrm{H}-\mathrm{Cl} \rightarrow \mathrm{H}-\mathrm{Br} \rightarrow \mathrm{H}-\mathrm{H}$
(B) $\mathrm{H}-\mathrm{F} \rightarrow \mathrm{H}-\mathrm{H} \rightarrow \mathrm{H}-\mathrm{Br} \rightarrow \mathrm{H}-\mathrm{Cl}$
(C) $\mathrm{H}-\mathrm{H} \rightarrow \mathrm{H}-\mathrm{Br} \rightarrow \mathrm{H}-\mathrm{Cl} \rightarrow \mathrm{H}-\mathrm{F}$
(D) $\mathrm{H}-\mathrm{H} \rightarrow \mathrm{H}-\mathrm{F} \rightarrow \mathrm{H}-\mathrm{Cl} \rightarrow \mathrm{H}-\mathrm{Br}$
27. Which compound contains network covalent bonding?
(A) CCl_{4}
(B) CsBr
(C) $\mathrm{H}_{2} \mathrm{CO}$
(D) SiC
28. Which represents the bonding between aluminum, Al , atoms and bromine, Br , atoms?
(A)

(B) $\cdot \dot{\mathrm{Al}}+$
$: \ddot{B}$
$\longrightarrow[\mathrm{Al}]^{3+}\left[\begin{array}{c}\ddot{\mathrm{Br}}: \\ \cdot \mathbf{~}\end{array}\right]$

(D) $\cdot \dot{\mathrm{Al}}+: \ddot{\mathrm{Br}} \cdot \longrightarrow: \mathrm{Al}: \ddot{\mathrm{Br}}:$
29. What explains the malleability of copper, $\mathrm{Cu}(\mathrm{s})$?
(A) cations attracted to anions
(B) cations surrounded by a sea of electrons
(C) network of covalent bonds
(D) sharing of electrons between atoms
30. Which compound would have the highest boiling point?
(A) cis-dichloroethene
(B) ethene
(C) ethyne
(D) trans-dichloroethene
31. The synthesis of which compound led to the modern definition of organic chemistry?
(A) benzene
(B) DNA
(C) polyester
(D) urea
32. Which is an aliphatic hydrocarbon?
(A) alkene
(B) amine
(C) ether
(D) ketone
33. Which is an alkane?
(A) $\mathrm{C}_{6} \mathrm{H}_{6}$
(B) $\mathrm{C}_{6} \mathrm{H}_{10}$
(C) $\mathrm{C}_{6} \mathrm{H}_{12}$
(D) $\mathrm{C}_{6} \mathrm{H}_{14}$
34. What is the name of the compound below?

(A) 2,6-diethylheptane
(B) 2-ethyl-3-methyloctane
(C) 2-ethyl-6-methyloctane
(D) 3,7-dimethylnonnane
35. Which is a structural isomer of this molecule?

(A)

(B)

(C)

(D)

36. Which reaction represents thermal cracking?
(A) $\mathrm{C}_{17} \mathrm{H}_{36(\text { (I) }} \xrightarrow{\text { neat }} \mathrm{C}_{9} \mathrm{H}_{20(\text { (I) }}+\mathrm{C}_{8} \mathrm{H}_{16(\text { (I) }}$
(B) $\mathrm{C}_{17} \mathrm{H}_{36(1)} \xrightarrow{\text { catalyst }} \mathrm{C}_{9} \mathrm{H}_{20(\text { (1) }}+\mathrm{C}_{8} \mathrm{H}_{16 \text { (I) }}$
(C) $\mathrm{C}_{9} \mathrm{H}_{20 \text { (1) }}+\mathrm{C}_{8} \mathrm{H}_{16 \text { (1) }} \xrightarrow{\text { catalyst }} \mathrm{C}_{17} \mathrm{H}_{36 \text { (1) }}$
(D) $\mathrm{C}_{9} \mathrm{H}_{20(1)}+\mathrm{C}_{8} \mathrm{H}_{16(1)} \xrightarrow{\text { heat }} \mathrm{C}_{17} \mathrm{H}_{36(1)}$
37. Which contains a carboxyl functional group?
(A) propanoic acid
(B) propanol
(C) propanone
(D) propylamine
38. What possible product(s) form from the reaction of 2-pentene with hydrogen bromide, HBr ?
(A) 2,3-dibromopentane
(B) 2-bromopentane and 3-bromopentane
(C) 2-methyl-2-bromobutane
(D) ethane and 1-bromopropane
39. Which structure has delocalized electrons?
(A)

(B)

(C)

(D)

40. Which is a product of esterification?
(A)

(B)

(C)

(D)

Part II
 Constructed Response
 Total Value: 40 Marks

Answer ALL questions in the space provided. Show all workings and report all final answers with correct significant digits and units.

Value

2 41.(a) Calculate the mass of 9.75L of neon, $\mathrm{Ne}(\mathrm{g})$, at STP.

Answer:

$$
\begin{array}{ll}
n_{N e}=\frac{V}{22.4 L / \mathrm{mol}}=\frac{9.75 \mathrm{~L}}{22.4 \mathrm{~L} / \mathrm{mol}}=0.435 \mathrm{~mol} & 1 \text { point } \\
\text { So: } \\
m_{N e}=n_{N e} \cdot M=0.435 \mathrm{~mol} \cdot 20.18 \mathrm{~g} / \mathrm{mol} \\
m_{N e}=8.78 \mathrm{~g} & 1 \text { point }
\end{array}
$$

(b) Calculate the percent composition of a pure substance that contains 6.01 g of copper, 3.02 g of sulfur and 5.97 g of oxygen.

Answer:

$$
\begin{array}{ll}
\text { total mass }=6.01 \mathrm{~g}+3.02 \mathrm{~g}+5.97 \mathrm{~g}=15.00 \mathrm{~g} & \mathbf{0 . 5} \text { point } \\
\% \mathrm{Cu}=\frac{6.01 \mathrm{~g} \mathrm{Cu}}{15.00 \mathrm{~g} \text { total }} \times 100=40.1 \% \mathrm{Cu} & \mathbf{0 . 5} \text { point } \\
\% S=\frac{3.02 \mathrm{~g} \mathrm{~S}}{15.00 \mathrm{~g} \text { total }} \times 100=20.1 \% S & \mathbf{0 . 5} \text { point } \\
\% O=100 \%-(40.1 \%+20.1 \%)=39.8 \% O & \mathbf{0 . 5} \text { point }
\end{array}
$$

Value

41. (continued)

3 (c) Calculate the empirical formula of a compound with the percent composition of $88.80 \% \mathrm{C}$ and $11.20 \% \mathrm{H}$.

Answer: Assuming a 100 g sample,
Percent to mass: $\mathrm{m}_{\mathrm{C}}=88.80 \mathrm{~g} \mathrm{C} ; \mathrm{m}_{\mathrm{H}}=11.20 \mathrm{~g} \mathrm{H}$;
0.5 point

Mass to moles:

$$
n_{C}=\frac{m_{C}}{M_{C}}=\frac{88.80 \mathrm{~g} \mathrm{C}}{12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C}}=7.394 \mathrm{~mol} \mathrm{C}
$$

$$
n_{H}=\frac{m_{H}}{M_{H}}=\frac{11.20 \mathrm{~g} \mathrm{H}}{1.01 \mathrm{~g} / \mathrm{mol} \mathrm{H}}=11.09 \mathrm{~mol} \mathrm{H}
$$

1 point

Divide by lowest:

$$
C_{\frac{7.394}{7.394}} H_{\frac{11.09}{7.394}}=C_{1} H_{1.500}
$$

1 point

Multiply until whole. In this case, we need to multiply by 2.

$$
C_{1} H_{1.500} \times 2=C_{2} H_{3}
$$

The empirical formula is $\mathrm{C}_{2} \mathrm{H}_{3}$
(d) Calculate the mass of lithium sulfide, $\mathrm{Li}_{2} \mathrm{~S}$, required to prepare 500.0 mL of $0.250 \mathrm{~mol} / \mathrm{L} \mathrm{Li}_{2} \mathrm{~S}(\mathrm{aq})$ solution.

Answer:
Switch volume to litres: $500.0 \mathrm{~mL}=0.5000 \mathrm{~L}$
Calculate moles:

$$
n=C V=(0.250 \mathrm{~mol} / \mathrm{L})(0.5000 \mathrm{~L})=0.125 \mathrm{~mol}_{\mathrm{Li}} \mathrm{~S} S
$$

Aside: Get molar mass of $\mathrm{Li}_{2} \mathrm{~S}$:

$$
\begin{aligned}
2 \times \mathrm{Li}=2 \times 6.94 \mathrm{~g} / \mathrm{mol} & =13.88 \mathrm{~g} / \mathrm{mol} \\
1 \times \mathrm{S}=1 \times 32.07 \mathrm{~g} / \mathrm{mol} & =32.07 \mathrm{~g} / \mathrm{mol} \\
& =45.95 \mathrm{~g} / \mathrm{mol} \mathrm{Li}_{2} \mathrm{~S}
\end{aligned}
$$

0.5 point

Calculate mass:

$$
m=n \cdot M=(0.125 \mathrm{~mol})(45.95 \mathrm{~g} / \mathrm{mol})=5.74 \mathrm{~g} \mathrm{Li}_{2} S
$$

0.5 point

Value

41. (continued)
(e) A solution of $\mathrm{NiCl}_{2}(\mathrm{aq})$ has a chloride ion concentration of $0.378 \mathrm{~mol} / \mathrm{L}$. What is the $\mathrm{NiCl}_{2}(\mathrm{aq})$ concentration? (Include a balanced chemical equation with your response.)

Answer:
Dissociation

$$
\mathrm{NiCl}_{2}(\mathrm{aq}) \rightarrow \mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \quad 0.5 \text { points }
$$

Given: $\mathrm{V}=0.5000 \mathrm{~L}$
Want: $\mathrm{C}=? \mathrm{NiCl}_{2}$
Given:
$C=0.378 \mathrm{~mol} / \mathrm{L}$

Mole ratio, using concentrations:

$$
\left.\begin{array}{l}
C_{\mathrm{Cl}^{-}}=C_{\mathrm{NiCl}_{2}}\left(\frac{2 \mathrm{~mol} \mathrm{Cl}}{}{ }^{-}\right. \\
1 \mathrm{~mol} \mathrm{NiCl}
\end{array}\right) .
$$

1 point
0.5 point

3 (f) Sodium metal, $\mathrm{Na}(\mathrm{s})$, reacts with an unknown gas, $\mathrm{X}_{2}(\mathrm{~g})$, according to the balanced reaction below:

$$
2 \mathrm{Na}(\mathrm{~s})+\mathrm{X}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaX}(\mathrm{~s})
$$

When 21.00 g of the gas reacts, 13.62 g of sodium metal is required for a complete reaction. What is the identity of the gas?

Answer:

Get moles:
$n_{N a}=\frac{m_{N a}}{M_{N a}}=\frac{13.62 \mathrm{~g} \mathrm{Na}}{22.99 \mathrm{~g} / \mathrm{mol} \mathrm{Na}}=0.592 \mathrm{~mol} \mathrm{Na}$
1 point

Mole Ratio:
$n_{X_{2}}=(0.5916 \mathrm{~mol} \mathrm{Na})\left(\frac{1 \mathrm{~mol} \mathrm{X}_{2}}{2 \mathrm{~mol} \mathrm{Na}}\right)=0.2962 \mathrm{~mol} X_{2}$
1 point

Convert to Molar Mass:
$M_{X_{2}}=\frac{m_{X_{2}}}{n_{X_{2}}}=\frac{21.00 \mathrm{~g} \mathrm{X} \mathrm{X}_{2}}{0.2962 \mathrm{~mol} \mathrm{X}_{2}}=70.89 \mathrm{~g} / \mathrm{mol} X_{2}$
0.5 point

Note: Since this is diatomic, $M_{X}=\frac{70.89 \mathrm{~g} / \mathrm{mol}}{2}=35.45 \mathrm{~g} / \mathrm{mol} \mathrm{X}$
This molar mass matches chlorine, Cl . The gas is $\mathrm{Cl}_{2}(\mathrm{~g})$
0.5 point

Value

41. (continued)
(g) For the reaction: $\mathrm{CaO}(\mathrm{s})+2 \mathrm{HF}(\mathrm{aq}) \rightarrow \mathrm{CaF}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ 12.5 g of calcium oxide, $\mathrm{CaO}(\mathrm{s})$, is reacted with 0.475 L of $0.800 \mathrm{~mol} / \mathrm{L}$ hydrofluoric acid, $\mathrm{HF}(\mathrm{aq})$. Determine the limiting reagent.
(i) Determine the limiting reagent.
(ii) Calculate the concentration of $\mathrm{CaF}_{2}(\mathrm{aq})$ produced.

Answer: Limiting reagent problem. Get moles for each reagent, and do a mole ratio for each reagent.

Get moles, CaO :

$$
\begin{array}{rlr}
n_{C a O}=\frac{m_{C a O}}{M_{C a O}}=\frac{12.5 \mathrm{~g} \mathrm{CaO}}{56.08 \mathrm{~g} / \mathrm{mol} \mathrm{CaO}}=0.223 \mathrm{~mol} \mathrm{CaO} & \mathbf{0 . 5} \text { point } \\
& \begin{array}{rlr}
\text { Aside: } & 1 \times \mathrm{Ca}=1 \times 40.08 \mathrm{~g} / \mathrm{mol} & =40.08 \mathrm{~g} / \mathrm{mol} \\
1 \times \mathrm{O}=1 \times 16.00 \mathrm{~g} / \mathrm{mol} & =16.00 \mathrm{~g} / \mathrm{mol} \\
& =56.08 \mathrm{~g} / \mathrm{mol} \mathrm{CH}_{4} & \mathbf{0 . 5} \mathbf{~ p o i n t}
\end{array}
\end{array}
$$

Mole Ratio of product CaF_{2}, based upon CaO :

$$
n_{\mathrm{CaF}_{2}}=(0.223 \mathrm{~mol} \mathrm{CaO})\left(\frac{1 \mathrm{~mol} \mathrm{CaF}_{2}}{1 \mathrm{~mol} \mathrm{CaO}}\right)=0.223 \mathrm{~mol} \mathrm{CaF} \mathrm{~F}_{2}(\text { from } \mathrm{CaO})
$$

0.5 point

Get moles, HF:
$n_{H F}=C V_{H F}=(0.800 \mathrm{~mol} / L) \cdot(0.475 \mathrm{~mol})=0.380 \mathrm{~mol} \mathrm{HF} \quad \mathbf{0 . 5}$ point
Mole Ratio of product CaF_{2}, based upon CaO :

$$
n_{\text {CaF }_{2}}=(0.380 \mathrm{~mol} \mathrm{HF})\left(\frac{1 \mathrm{~mol} \mathrm{CaF}_{2}}{2 \mathrm{~mol} \mathrm{CaO}^{2}}\right)=0.190 \mathrm{~mol} \mathrm{CaF}_{2}(\text { from } \mathrm{HF})
$$

$$
0.5 \text { point }
$$

Compare the results from each mole ratio; conclude that the theoretical yield is 0.190 mol of CaF_{2}. This means that the limiting reagent is HF . $\mathbf{0 . 5}$ point
(ii) Calculate the concentration of CaF2(aq) that would be produced.
$C=\frac{n}{V}=\frac{0.190 \mathrm{~mol}}{0.475 \mathrm{~L}}=0.400 \mathrm{~mol} / \mathrm{L} \mathrm{CaF}_{2}$
(0.5 point)

Science communication:
For any two of: significant figures, units, or use of formulas. (0.5 point)
42.(a) Complete the following table for methanol $\mathrm{CH}_{3} \mathrm{OH}$.

Lewis Diagram		(1 mark)
VSEPR Shape diagram		(1 mark)
Name of shape around each central atom	Tetrahedral (0.5 mark)	Bent (0.5 mark)

(b) i) Water, $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is poured into a test tube containing carbon tetrachloride, $\mathrm{CCl}_{4}(1)$. The test tube is shaken and then allowed to settle.

The test tube is shown below. Explain why the layers form.

Answer

CCl_{4} is nonpolar (0.5 mark)
$\mathrm{H}_{2} \mathrm{O}$ is polar (0.5 mark)
"like dissolves like" therefore polar substances are immiscible in nonpolar substances (1 mark)

Value

42. (continued)

2
(b) ii) To determine which layer is water and which layer is $\mathrm{CCl}_{4}(\mathrm{l})$, a Chemist adds purple iodine crystals, $\mathrm{I}_{2}(\mathrm{~s})$ to the same test tube. The test tube is shaken and allowed to settle for a second time. Based on the results you see below, how can you be certain the fluid in the bottom layer is $\mathrm{CCl}_{4}(\mathrm{l})$? Explain.

Answer

Upper layer is water (0.5 mark). I_{2} is nonpolar substance (0.5 mark) therefore will be miscible in nonpolar solvent $\left(\mathrm{CCl}_{4}\right)$ (1 mark).

Answer

In the HCl molecule a bond dipole exists between the H and the Cl as a result of the difference in electronegativity between the H and Cl . The shared pair of electrons is partially pulled toward the more electronegative Cl resulting in a charge separation between the H and Cl . The overall effect is a polar bond toward the Cl .

Value

42. (continued)

3 (d) Rank the following substances in order of increasing boiling points. Justify your answer.
potassium chloride, KCl
fluoroethene, $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~F}$
ethene, $\mathrm{C}_{2} \mathrm{H}_{4}$

Answer: We first realize that KCl is ionic; fluoroethene and ethane are molecular. This immediately places KCl at the higher boiling point. The relative ranking of the fluoroethene and ethane then comes down to the relative sizes of their intermolecular forces:
$\mathrm{C}_{2} \mathrm{H}_{6}(0.5$ mark $) \quad<\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~F}(0.5$ mark $) \quad<\quad \mathrm{KCl}$ (0.5 mark)
Low LD (16e $)$; no DD
Higher LD (24e-), has DD
ionic
(0.5 mark)
(0.5 mark)
(0.5 mark)

3 43.(a) Complete the table with either a structural diagram or IUPAC name.

IUPAC Name	Structural Diagram
1,3-dichloro benzene	
2-heptanone	
5,5-dimethyl-2-hexyne	

Value

43. (continued)

4 (b) Draw and name two isomers for $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$.

Structure 1:	
Name: ethanol (1 mark)	Structure 2: (1 mark)
Name: dimethyl ether or methoxy methane (1 mark)	

c) From the reactions given, draw the structures for compounds A, B and C .

Step1:

Step 2:

Step3:

Note: It is possible that there are two possible answers for Compound C
Two possible isomers for Compound C:

[^0]: ALL MATERIALS MUST BE PASSED IN WITH THIS EXAM. Use your time wisely. Good luck!

