Chemistry 2202 Common Exam June 2012

Constructed Response Answer Key

41. (a) $\mathrm{mol} \mathrm{CO}_{2}=\mathrm{v} \div \mathrm{V}$

$$
\begin{aligned}
& =36.4 \mathrm{~L} \div 22.4 \mathrm{~L} / \mathrm{mol} \\
& =1.625 \mathrm{~mol}
\end{aligned}
$$

(1 Mark)

$$
\begin{aligned}
& \text { Molecules } \mathrm{CO}_{2}=\mathrm{mol} \mathrm{x} \mathrm{~N} \\
& \mathrm{~A} \\
&=1.625 \mathrm{~mol} \times 6.02 \times 10^{23} \text { molecules } / \mathrm{mol} \\
&=9.78 \times 10^{23} \text { molecules } \mathrm{CO}_{2}
\end{aligned}
$$

41. (b) Assume 100 g sample
$\mathrm{mol}_{C}=60.00 \mathrm{~g} \div 12.01 \mathrm{~g} / \mathrm{mol}=4.9958 \mathrm{~mol}$
mol $_{H}=4.485 \mathrm{~g} \div 1.01 \mathrm{~g} / \mathrm{mol}=4.4406 \mathrm{~mol}$
$\mathrm{mol}_{0}=35.52 \mathrm{~g} \div 16.00 \mathrm{~g} / \mathrm{mol}=2.22 \mathrm{~mol}$
(1.5 Mark)

Divide each by lowest amount:
$\left(\mathrm{C}_{4.9958} \mathrm{H}_{4.4406} \mathrm{O}_{2.22}\right) \div 2.22$
$\mathrm{C}_{2.25} \mathrm{H}_{2} \mathrm{O}_{1}$
(1 Mark)

Multiply by 4 to get empirical formula
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$
(0.5 Mark)

NOTE: Other methods acceptable

41. (c) $\mathrm{mol} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=\mathrm{cx} \mathrm{v}$

$$
\begin{aligned}
& =0.150 \mathrm{~mol} / \mathrm{L} \times 0.250 \mathrm{~L} \\
& =0.0375 \mathrm{~mol}
\end{aligned}
$$

(1 Mark)
mass $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=\mathrm{nx} \mathrm{M}$

$$
\begin{aligned}
& =0.0375 \mathrm{~mol} \mathrm{x} 294.20 \mathrm{~g} / \mathrm{mol} \\
& =11.0 \mathrm{~g}
\end{aligned}
$$

41. (d) Many acceptable answers:

- inaccurate weighing of solute
- inaccurate addition of water (meniscus)
- contaminated/wet glassware or equipment
- any other acceptable answer

41. (e) $\mathrm{Vf}=25.0 \mathrm{~mL}+500.0 \mathrm{~mL}$

$$
=525.0 \mathrm{~mL}
$$

(0.5 Mark)

$$
\begin{aligned}
& \mathrm{CiVi}=\mathrm{CfVf} \\
& \begin{aligned}
\mathrm{Cf} & =(\mathrm{CiVi}) \div \mathrm{Vf} \\
& =(1.74 \mathrm{~mol} / \mathrm{L})(0.025 \mathrm{~L}) \div(0.525 \mathrm{~L})
\end{aligned}
\end{aligned}
$$

$$
=0.0829 \mathrm{~mol} / \mathrm{L}
$$

(1 Mark)
41. (f) Determine mol of each reactant:
$\mathrm{mol} \mathrm{Zn}=\mathrm{m} \div \mathrm{M}$

$$
\begin{aligned}
& =2.00 \mathrm{~g} \div 65.38 \mathrm{~g} / \mathrm{mol} \\
& =0.03059 \mathrm{~mol} \mathrm{Zn}
\end{aligned}
$$

(1 Mark)

$$
\begin{aligned}
\mathrm{mol}_{\mathrm{AgNO}_{3}} & =\mathrm{c} \times \mathrm{v} \\
& =0.200 \mathrm{~mol} / \mathrm{L} \times 0.100 \mathrm{~L} \\
& =0.0200 \mathrm{~mol} \mathrm{AgNO}_{3}
\end{aligned}
$$

(1 Mark)

Determine Limiting Reagent
$0.03059 \mathrm{~mol} \mathrm{Zn} \times \frac{2 \mathrm{Ag}}{1 \mathrm{Zn}}=0.0611 \mathrm{~mol} \mathrm{Ag}$
(0.5 Mark)
$0.0200 \mathrm{~mol} \mathrm{AgNO} 3 \times \frac{2 \mathrm{Ag}}{2 \mathrm{AgNO}}=0.0200 \mathrm{~mol} \mathrm{Ag}$
(0.5 Mark)

Limiting reagent is AgNO_{3} but not required to state for marks.

Calculate mass of Ag

$$
\begin{aligned}
\mathrm{m} & =\mathrm{n} \mathrm{x} \mathrm{M} \\
& =(0.0200 \mathrm{~mol}) \times(107.87 \mathrm{~g} / \mathrm{mol}) \\
& =2.16 \mathrm{~g} \mathrm{Ag}
\end{aligned}
$$

(1 Mark)
41. (g) $\mathrm{A}-\mathrm{CHCl}_{3}-$ Polar, thus soluble. No conductivity because molecular.
$\mathrm{B}-\mathrm{AlCl}_{3}-$ High solubility (solubility table). Thus, high conductivity. $\mathrm{C}-\mathrm{PbCl}_{2}$ - Low solubility (solubility table). Thus low conductivity.

NOTE: 0.5 Mark for identifying each substance.
0.5 Mark for each explanation.
42. (a)

Lewis Diagram	
VSEPR Shape Diagram	
VSEPR Shape Name	V-Shaped or Bent (1 Mark)

42. (b)

(1 Mark)

(0.5 Mark)

Formula is : $\mathrm{Ca}_{3} \mathrm{~N}_{2}$ (0.5 Mark)

42. (c) Fluorine < Ammonia < Sodium chloride < Silicon dioxide (1 Mark for Order)

LDF
LDF
Ionic
Network covalent
D-D
H-Bonding
(0.5 Marks for each substance justification)
42. (d)

Alcohol

- LDF (same)
- Polar (D-D forces)
- H-Bonds

Alcohol will have higher boiling point because of greater intermolecular forces (HBonds)
(1 Mark For each diagram)
(0.5 Mark for identifying forces in each compound)
(1 Mark for conclusion)
43. (a) POSSIBLE STRUCTURES:

 cyclobutene

1-methylcyclopropene

3-methylcyclopropene
(1 Mark for each diagram)
(1 Mark for each name)
43. (b)

IUPAC Name	Structural Diagram
Hexanoic acid	
1,4-difluorobenzene	
Ethanamine	

(1 Mark Each)
44. (c)

