Chemistry 2202 Common Exam June 2012

Constructed Response Answer Key

41. (a) mol $co_2 = v \div V$	
$= 36.4 L \div 22.4 L/mol$	
= 1.625 mol	(1 Mark)
Molecules $co_2 = mol x N_A$	
$= 1.625 \text{ mol x } 6.02 \times 10^{23} \text{ molecules/mol}$	
$= 9.78 \times 10^{23}$ molecules CO ₂	(1 Mark)
41. (b) Assume 100g sample	
$mol_{C} = 60.00g \div 12.01 \text{ g/mol} = 4.9958 \text{ mol}$	
$mol_H = 4.485 \text{g} \div 1.01 \text{ g/mol} = 4.4406 \text{ mol}$	
$mol_0 = 35.52g \div 16.00 \text{ g/mol} = 2.22 \text{ mol}$	(1.5 Mark)
Divide each by lowest amount:	
$(C_{4.9958}H_{4.4406}O_{2.22})\div 2.22$	
$C_{2.25}H_2O_1$	(1 Mark)
Multiply by 4 to get empirical formula	
$C_9H_8O_4$	(0.5 Mark)
NOTE: Other methods acceptable	
41. (c) mol $K_2Cr_2O_7 = c \times v$	
= 0.150 mol/L x 0.250 L	
= 0.0375 mol	(1 Mark)
mass $\kappa_2 Cr_2 O_7 = n \ge M$	
= 0.0375 mol x 294.20 g/mol	
= 11.0 g	(1 Mark)

41. (d) Many acceptable answers:

- inaccurate weighing of solute
- inaccurate addition of water (meniscus)
- contaminated/wet glassware or equipment
- any other acceptable answer

41. (e) Vf = 25.0 mL + 500.0 mL

= 525.0 mL (0.5 Mark)

CiVi = CfVf
Cf= (CiVi)
$$\div$$
 Vf
= (1.74 mol/L)(0.025L) \div (0.525L) (0.5 Mark)

$$= 0.0829 \text{ mol/L}$$
 (1 Mark)

41. (f) Determine mol of each reactant:

mol
$$z_n = m \div M$$

= 2.00 g ÷ 65.38 g/mol
= 0.03059 mol Zn (1 Mark)

 $mol Agno_3 = c x v$

$$= 0.200 \text{ mol/L x } 0.100 \text{ L}$$
$$= 0.0200 \text{ mol AgNO}_3$$
(1 Mark)

Determine Limiting Reagent

0.03059 mol Zn x
$$\frac{2 Ag}{1 Zn}$$
 = 0.0611 mol Ag (0.5 Mark)

0.0200 mol AgNO₃ x $\frac{2 Ag}{2 AgNO3}$ = 0.0200 mol Ag (0.5 Mark)

Limiting reagent is AgNO₃ but not required to state for marks.

Calculate mass of Ag

$$m = n \times M$$

= (0.0200mol) x (107.87 g/mol)
= 2.16 g Ag (1 Mark)

41. (g) $A - CHCl_3 - Polar$, thus soluble. No conductivity because molecular.

 $B - AlCl_3 - High$ solubility (solubility table). Thus, high conductivity.

 $C-PbCl_2-Low \ solubility \ (solubility \ table). Thus low \ conductivity.$

NOTE: 0.5 Mark for identifying each substance.

0.5 Mark for each explanation.

42. (a)

Lewis Diagram	F S F F
	(1 Mark)
VSEPR Shape Diagram	(1 Mark)
VSEPR Shape Name	(1 Mark)

42. (b)

Formula is : Ca_3N_2

42. (c) Fluorine < Ammonia < Sodium chloride < Silicon dioxide (1 Mark for Order)

LDF	LDF	Ionic	Network covalent
	D-D		
	H-Bonding		

(0.5 Marks for each substance justification)

42. (d)

Ether

Alcohol

- LDF (same)
 Polar (D-D forces)
 LDF (same)
 Polar (D-D forces)
- H-Bonds

Alcohol will have higher boiling point because of greater intermolecular forces (H-Bonds)

(1 Mark For each diagram)

(0.5 Mark for identifying forces in each compound)

(1 Mark for conclusion)

43. (a) POSSIBLE STRUCTURES:

СН

(1 Mark for each diagram)

(1 Mark for each name)

HC

```
43. (b)
```


(1 Mark Each)

44. (c)

