Chemistry 2202 Final Examination – June 2009 Question Map and Answer Key

Part 1: Selected Response

Question	Unit	Level	SCO	Pg#
1	1	1	115-3	24
2	1	2	115-3	26
3	1	1	323-1	26
4	1	1	323-1	28
5	1	1	323-1	28
6	1	2	323-1	28
7	1	2	323-11	40
8	1	1	323-11	40
9	1	1	213-10	38
10	1	1	213-5	34
11	1	2	213-5	32
12	1	2 2	323-1	28
13	1	2	323-11	40
14	1	3	323-1	28
15	1	2	323-10	36
16	1	1	213-5	32
17	1	1	323-10	36
18	1	3	213-3	42
			214-12	
19	2	1	321-4	58
20	2	2	214-2	72
21	2	1	321-4	76
22	2	2	323-7	74
23	2	1	323-11	60
24	2	2	321-4	60
25	2	1	321-4	70
26	2	2	321-5	64
27	2	1	321-5	62
28	2	1	321-4	76
29	2	3	321-7	56
30	2	2	321-5	62
31	2	2	321-7	56
32	3	1	319-4	82
33	3	1	319-7	88
34	3	1	319-7	86
35	3	1	319-7	100
36	3	1	319-7	104
37	3	2	319-6	94
38	3	2	319-5	92
39	3	3	319-7	88
40	3	3	319-8	106

Part 2: Constructed Response

Question		Unit	Level	Marks	SCO	Page #
41	а	1	2	4	321-1	30
	b	1	2	5	323-1	30
	С	1	2	3	323-1	28
	d	1	2	4	213-5	34
	е	1	2	4	323-11	40
	f	1	3	4	213-5	32
	g	1	3	3	323-1	26
42	а	2	2	6	321-4	60
					321-11	60
					321-5	62
	b	2	2	3	321-8	66 & 76
	С	2	2	4	321-8	66 & 76
	d	2	3	4	321-4	58
43	а	3	2	6	319-5	92
	b	3	2	6	319-5	92
	С	3	3	4	319-8	96

Multiple Choice (PART I)

1.	С	21.	D
2.	В	22.	С
3.	С	23.	С
4.	D	24.	D
5.	В	25.	С
6.	С	26.	D
7.	В	27.	D
8.	В	28.	В
9.	С	29.	D
10.	С	30.	А
11.	В	31.	В
12.	В	32.	А
13.	В	33.	D
14.	D	34.	С
15.	A	35.	А
16.	В	36.	В
17.	D	37.	С
18.	A	38.	А
19.	С	39.	А
20.	А	40.	А

Part II- Constructed Response Total Value : 60%

Answer ALL questions in the space provided. All necessary workings must be shown to receive full marks.

Value

4

3

3

2

41. a. Percent composition analysis reveals that a compound is 71.06% cobalt and 28.94% oxygen. Determine the empirical formula.

Assume 100 g.

$$n_{Co} = \frac{m}{M} = \frac{71.06 \ g}{58.93 \ g/mol} = 1.206 \ mol$$

$$n_0 = \frac{m}{M} = \frac{28.94 \, g}{16.00 \, g/mol} = 1.809 \, mol$$
 1%

$$Co_{\frac{1.206}{1.206}}O_{\frac{1.809}{1.206}} = Co_1O_{1.5} \times 2 = Co_2O_3$$
2%

b. A compound has a molar mass of 84.18 g/mol. Percent composition analysis revealed that the compound has an empirical formula of C_2H_4 . Determine the molecular formula of the compound.

$$M_{C_{2}H_{4}} = 12.01 \frac{g}{mol} \times 2 + 1.01 \frac{g}{mol} \times 4 =$$

$$24.02 \frac{g}{mol} + 4.04 \frac{g}{mol} = 28.06 \ g/mol$$
1%

$$\frac{M_{molecular}}{M_{empirical}} = \frac{84.18 \ g/mol}{28.06 \ g/mol} = 3$$
1%

$$3 \times C_2 H_4 = \boldsymbol{C_6 H_{12}}$$

c. Calculate the volume of 10.0 g of nitrogen dioxide, $NO_{2(g)}$ at STP.

$$M = \frac{14.01g}{mol} + \frac{16.00g}{mol} \times 2 = 46.01 \, g/mol$$
 1%

$$n = \frac{m}{M} = \frac{10.0 \, g}{46.01 \, g/mol} = 0.217 \, mol$$
 1%

$$v = n \cdot V = 0.217 \ mol \times 22.4 \frac{L}{mol} = 4.87 \ L$$
 1%

d. (i) Determine the volume of a 2.00 mol/L KNO_{3(aq)} solution required to make 250.0 mL of a 0.200 mol/L KNO_{3(aq)} solution.

$$C_I V_I = C_F V_F \tag{0.5\%}$$

$$V_I = \frac{C_F V_F}{C_I} = 0.5\%$$

$$\frac{\left(0.200\frac{mol}{L}\right)(0.250\,L)}{(2.00\frac{mol}{L})} = 0.0250\,L$$
1%

OR 25.0 mL

- (ii) Outline the steps you would use to prepare this new solution.
- 1. With a pipette or graduated cylinder, obtain 25.0 mL of 2.00 mol/L KNO_{3(aq)}
- 2. Transfer to a 250 mL volumetric flask
- 3. Add water to bring the volume in the flask to the fill line on the flask

4. Stopper and invert

2

4

2

4

*Or other acceptable answer at teacher's discretion

e. (i) A student reacts 50.0 g of $SiO_{2(s)}$ with excess $HF_{(aq)}$. Calculate the theoretical yield of $H_2O_{(1)}$ in grams.

$$SiO_{2(s)} + 4HF_{(aq)} \rightarrow SiF_{4(g)} + 2H_2O_{(l)}$$

$$M_{\rm SiO_{2(S)}} = 28.09 \frac{g}{mol} + 16.00 \frac{g}{mol} \times 2 = 60.09 \frac{g}{mol}$$
 1%

$$n_{\text{SiO}_{2(s)}} = \frac{50.0 \, g}{60.09 \, g/mol} = 0.832 \, \text{mol}$$
 1%

$$n_{H_20} = 0.832 \ mol \ \text{SiO}_{2(s)} \times \frac{2 \ mol \ H_20}{1 \ mol \ \text{SiO}_{2(s)}} = 1.66 \ \text{mol} \ H_20$$
 1%

$$m_{H_2O} = n \times M = 1.66 \text{ mol } H_2O \times 18.02 \frac{g}{mol} = 30.0g$$
 1%

(ii) If the actual yield of $H_2O_{(1)}$ produced in part (i) was 24.6 g, determine the percent yield.

* Please note: If students do not get part (i) correct, mark part (ii) for procedure (i.e. they can still get full marks for part (ii))

$$\% yield = \frac{actual yield}{theoretical yield} \times 100\% \qquad 0.5\%$$

$$\% \ yield = \frac{24.6g}{30.0g} \times 100\%$$
 0.5%

$$\%$$
 yield = $0.820 \times 100\%$ 0.5%

$$\% yield = 82.0\%$$
 0.5%

f. A student discovered a bottle which contains a clear colorless solution. The label on the bottle, which was partially removed, read "_____ nitrate". The student tested two samples of the solution to determine the compound.

In test tube A the student added a few drops of $NaCl_{(aq)}$ and a precipitate formed.

In test tube B the student added a few drops of $Na_2SO_{4(aq)}$ and a precipitate formed.

What are 2 possible names for the solution in the bottle? Explain.

Cations that form insoluble compounds with chloride:

$$Ag^+$$
, Tl^+ , Hg^{2+} , Hg^+ , Cu^+ , Pb^{2+} 1%

Cations that form insoluble compounds with sulfate:

$$Ca^{2+}$$
, Sr^{2+} , Ba^{2+} , Ra^+ , Ag^+ , Pb^{2+} 1%

Both lead(II) and silver ions form precipitates with chloride and sulfate, therefore the 2 possible names for the solution in the bottle are: 1%

1. Silver nitrate	OR	<u>Also Accept</u> AgNO ₃	0.5%
2. Lead (II) nitrate	OR	$Pb(NO_3)_2$	0.5%

g. Naturally occurring magnesium exists as a mixture of three isotopes. Mg-24 has an atomic mass of 23.985 amu and a relative abundance of 78.70 %. Mg-25 has an atomic mass of 24.985 amu and a relative abundance of 10.13%. The average atomic mass of magnesium is 24.31 amu. Calculate the atomic mass of the remaining isotope.

$$(23.985)(0.7870) + (24.985)(0.1013) + (Mg-26)(0.1117) = 24.31$$
 1%
18.876 + 2.531 + (Mg-26)(0.1117) = 24.31
(Mg-26)(0.1117) = 2.903 1%

Mg-26 = 25.989
$$\mu$$
 1%

42. a. For the molecule CH_3F :

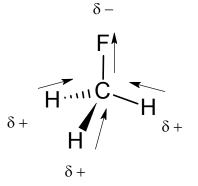
3

2

2

2

(i) Draw the Lewis dot diagram.


(ii) **Draw and name** the VSEPR shape diagram.

 $H \xrightarrow{H}_{F}$ Tetrahedral Shape

(iii) Is CH_3F a polar molecule? Explain.

* No marks for simply saying yes. Must explain why and/or use a diagram.

Answer: Yes. All bonds are polar and the vectors don't cancel each other, therefore there is a negative dipole at fluorine and positive dipoles at the hydrogens.

- b. For each pair of compounds, predict which substance will have the higher boiling point. Justify your answer.
- 2

2

2

4

(i) CF_4 or CBr_4

Only significant force in either compound is LDF. CBr_4 would have a higher boiling point because its LDF are stronger due to larger number of electrons per molecule (CBr_4 has 146 electrons compared to 42 electrons for CF_4)

(ii) SiO_2 or Pb

 SiO_2 has a higher boiling point because it is a network solid and has network covalent bonding. Network covalent bonding is a stronger force than metallic bonding.

NaCl has a higher boiling point because ionic bonding is a stronger force than the London dispersion forces present amongst the CH₄ molecules.

- 1 c. Which of the 6 substances in (b) has the lowest boiling point? CH_4
 - d. A molecule consists of carbon, nitrogen, and hydrogen. This molecule has one multiple bond, one carbon atom and one nitrogen atom.

Draw the 2 Lewis diagrams for this compound.

Structure 1
$$H$$
 2%

43. a. Name each compound using the IUPAC naming rules.

* While teachers should use their own discretion when marking the naming questions, it is suggested that students get partial marks for getting the parent chain correct.

2

(i)
$$H_3C-C \equiv C - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$$

 $\downarrow \\ CH_3$

Br

- Name: <u>6,6-dimethyl-2-octyne</u>
- 2

$$\bigcirc$$

Name: ethylcyclopentane

2 (iii)

(ii)

Name: <u>1-bromo-3-chlorobenzene</u>

Draw a structural diagram for each compound.

(i) 3-ethylheptane

b.

2

2

$$\begin{array}{c} \mathsf{H_3C}{\longrightarrow}\mathsf{CH_2CH_2CH_2CH_2CH_2CH_3}\\ \mathsf{H_3C}{\longrightarrow}\mathsf{CH_2}\\ \mathsf{H_3}\\ \mathsf{CH_3}\end{array}$$

(ii) butanal

c.

$$\begin{array}{cccccccc} H & H & H & O \\ I & I & I & I \\ H - C - C - C - C - C \\ I & I & I \\ H & H & H \end{array}$$


2

4

(iii) 3-methyl-2-hexanol

$$H_3C$$
—CH-CH-CH₂CH₂CH₂CH₃
| |
OH CH₃

Ethene reacts with hydrogen gas to produce Compound A. Compound A reacts with fluorine gas to produce Compound B and Compound C. Use structural diagrams to identify Compounds A, B, and C.

