Chemistry 2202 Common Exam 2010

Answer Section

MULTIPLE CHOICE

1.	ANS: B OBJ: 115-3	PTS: 1	DIF: level 1	REF: page 24
2.	ANS: C OBJ: 115-3	PTS: 1	DIF: level 1	REF: page 24
3.	ANS: D OBJ: 115-3	PTS: 1	DIF: level 2	REF: page 24
4.	ANS: C OBJ: 323-1	PTS: 1	DIF: level 2	REF: page 26
5.	ANS: A OBJ: 323-1, (STS	PTS: 1 E)323-12	DIF: level 2	REF: page 30, (STSE)page 115
6.	ANS: D OBJ: 213-5	PTS: 1	DIF: level 1	REF: page 32
7.	ANS: D OBJ: 213-5	PTS: 1	DIF: level 1	REF: page 32
8.	ANS: B OBJ: 213-5	PTS: 1	DIF: level 1	REF: page 32
9.	ANS: B OBJ: 213-5	PTS: 1	DIF: level 1	REF: page 32
10.	ANS: B OBJ: 213-5	PTS: 1	DIF: level 2	REF: page 32
11.	ANS: B OBJ: 213-5	PTS: 1	DIF: level 1	REF: page 34
12.	ANS: A OBJ: 213-5	PTS: 1	DIF: level 3	REF: page 34
13.	ANS: C OBJ: 323-10	PTS: 1	DIF: level 2	REF: page 36
14.	ANS: A OBJ: 323-10	PTS: 1	DIF: level 2	REF: page 38
15.	ANS: A OBJ: 323-11	PTS: 1	DIF: level 3	REF: page 38
16.	ANS: A OBJ: 323-11	PTS: 1	DIF: level 1	REF: page 40
17.	ANS: C OBJ: 323-11	PTS: 1	DIF: level 1	REF: page 40-41
18.	ANS: A OBJ: 323-11	PTS: 1	DIF: level 2	REF: page 40
19.	ANS: D OBJ: 321-7	PTS: 1	DIF: Level 2	REF: 56

20.	ANS: B OBJ: 321-4	PTS: 1	DIF: Level 1	REF: 58
21.	ANS: A OBJ: 321-4	PTS: 1	DIF: Level 2	REF: 58
22.	ANS: B OBJ: 321-11	PTS: 1	DIF: Level 1	REF: 60
23.	ANS: D OBJ: 321-11	PTS: 1	DIF: Level 2	REF: 60
24.	ANS: A OBJ: 114-2	PTS: 1	DIF: Level 2	REF: 60
25.	ANS: A OBJ: 321-5	PTS: 1	DIF: Level 1	REF: 62
26.	ANS: C OBJ: 321-5	PTS: 1	DIF: Level 2	REF: 62
27.	ANS: D OBJ: 321-5	PTS: 1	DIF: Level 1	REF: 64
28.	ANS: C OBJ: 321-4	PTS: 1	DIF: Level 1	REF: 68
29.	ANS: C OBJ: 321-4	PTS: 1	DIF: Level 1	REF: 70
30.	ANS: A OBJ: 323-7	PTS: 1	DIF: Level 3	REF: 74
31.	ANS: D OBJ: 214-2	PTS: 1	DIF: Level 2	REF: 72
32.	ANS: A OBJ: 319-4	PTS: 1	DIF: Level 1	REF: 82
33.	ANS: B OBJ: 319-7	PTS: 1	DIF: Level 1	REF: 86
34.	ANS: C OBJ: 319-7	PTS: 1	DIF: Level 1	REF: 86 and 88
35.	ANS: D OBJ: 319-7	PTS: 1	DIF: Level 2	REF: 90
36.	ANS: B OBJ: 319-8	PTS: 1	DIF: Level 1	REF: 96
37.	ANS: C OBJ: 319-7	PTS: 1	DIF: Level 1	REF: 104
38.	ANS: A OBJ: 319-7	PTS: 1	DIF: Level 2	REF: 104
39.	ANS: C OBJ: 319-8	PTS: 1	DIF: Level 3	REF: 106

40. ANS: D OBJ: 319-8 PTS: 1

DIF: Level 3

REF: 106

SHORT ANSWER

41. ANS:

Average Atomic Mass of Novium =
$$(192.17 + 48.88 + 32.46) = 273.5$$
 amu 1 1/2

(B)
$$M_{C2H5COOH} = 3 \text{ x } 12.01 \text{ g/mol} = 36.03 \text{ g/mol}$$

 $6 \text{ x } 1.01 \text{ g/mol} = 6.06 \text{ g/mol}$
 $2 \text{ x } 16.00 \text{ g/mol} = 32.00 \text{ g/mol}$
 74.09 g/mol

1

1

$$n = m/M = 3.45 \text{ g}/74.09 \text{g/mol} = 0.0466 \text{ moles}$$

$$\#$$
particles = nN_a = (0.0472 moles)(6.02 x 10^{23} particles/mole) = 2.80 x 10^{22} molecules

(C) Assume 100 grams, thus 43.64 grams of P and 56.36 g of O

$$n_P = m/M = 43.64 \text{ g}/30.97 \text{g/mol} = 1.409 \text{ moles}$$
 1/2
 $n_O = m/M = 56.36 \text{ g}/16.00 \text{ g/mol} = 3.523 \text{ moles}$ 1/2

$$1.409/1.409 : 3.523/1.409 = 1 : 2.5$$
 (multiply by 2) 2 : 5

thus we get P₂O₅ which has a molar mass of 141.94 g/mol

hus we get
$$P_2O_5$$
 which has a molar mass of 141.94 g/mol 1/2

$$M_{P2O5} = 2 \text{ x } 30.97 \text{ g/mol} = 61.94 \text{ g/mol}$$
 $5 \text{ x } 16.00 \text{ g/mol} = 80.00 \text{ g/mol}$
 141.94 g/mol

283.88 g/mol / 141.94 g/mol = 2, thus our molecular formula is twice as large

Answer: molecular formula is P₄O₁₀ 1

(D) (i) ANS:

Mass of empty vial 10.4 g

Mass of sample 5.2 g

$$M = 39.10 + 54.94 + 4(16.00) = 158.04 \text{ g/mol}$$

$$n = \frac{m}{M} = \frac{5.2 \text{ g}}{158.04 \text{ g/mol}} = 0.032 \text{ 9031 mol}$$

$$C = \frac{n}{v} = \frac{0.032 \ 9 \ 031 \ \text{mol}}{1.500 \ \text{L}} = 0.0219354 \ \frac{\text{mol}}{L} = 0.022 \ \frac{\text{mol}}{L}$$

DIF: level 3 PTS: 4 REF:page 34 OBJ: 213-5 (ii) Use a balance and weigh boat, obtain 5.2 g of solute.

Dissolve in a large (1000. mL) beaker containing about 750 mL of water.

Stir with glass stirring rod to dissolve.

Transfer to 1.5 L volumetric flask using a funnel and stirring rod.

Rinse beaker rod and funnel thoroughly into the flask.

Stopper flask and invert several times to ensure homogeneity.

(E) Calculate solution concentration: $[CaCl_2] = 0.26 \text{ M x } \frac{1}{2} = 0.13 \text{ M}$ Find moles of $CaCl_2 : 0.13 \text{ M x } 4.0 \text{ L} = 0.52 \text{ mol}$ Mass of $CaCl_2 : n \text{ x M} = 0.52 \text{ mol x } 110.98 \text{ g/mol} = 58 \text{ g}$

PTS: 3 DIF: level 3 REF: page 40 OBJ: 323-11

(F) $n_{NH_3} = \frac{m}{M} = \frac{154 \text{ g}}{17.04 \frac{g}{\text{mol}}} = 9.0375587 \text{ mol NH}_3$ $n_{H_2} = n_{NH_3} \times \frac{W}{G} = 9.0375587 \text{ mol NH}_3 \times \frac{3 \text{ mol H}_2}{2 \text{ mol NH}_3} = 13.556338 \text{ mol H}_2$ $v = n \times V_{STP} = 13.556338 \text{ mol H}_2 \times 22.4 \frac{L}{\text{mol}} = 303.66197 \text{ L} = 304 \text{ L}$ 1 pt/step = 3

PTS: 3 DIF: level 2 REF: page 38 OBJ: 323-11

(G)
$$2 \operatorname{AgNO}_{3(aq)} + \operatorname{CaCl}_{2(aq)} \rightarrow 2 \operatorname{AgCl}_{(s)} + \operatorname{Ca(NO}_{3)_{2(aq)}}$$

$$\begin{split} &n_{AgNO_3} = C \times v = 0.075 \; L \times 1.25 \, \text{mol/L} = 0.09375 \; \text{mol} \\ &n_{CaCl_2} = C \times v = 0.075 \; L \times 0.775 \, \text{mol/L} = 0.058125 \; \text{mol} \end{split}$$

$$\begin{split} n_{AgNO_3} &= 0.058125 \text{ mol } CaCl_2 \times \frac{2 \text{ mol } AgNO_3}{1 \text{ mol } CaCl_2} = 0.11625 \text{ mol } AgNO_3 \\ n_{CaCl_2} &= 0.09375 \text{ mol } AgNO_3 \times \frac{1 \text{ mol } CaCl_2}{2 \text{ mol } AgNO_3} = 0.046875 \text{ mol } CaCl_2 \end{split}$$

Since the amount of $AgNO_3$ available (0.09375) is less than the amount required (0.11625), it is limiting.

Points breakdown: 1/2 per mol calculation, 1 per mole ratio calculation, 1 for correct conclusion

42. (A) ANS:

(i)	H C X H H	Points: Award 1 for individual Lewis diagrams and 1 for correct Lewis diagram for molecule = 2
(ii)	H C=O H Trigonal Planar	1 for shape diagram 1 for name of shape

(iii) Yes. Since the electronegativities of hydrogen and oxygen are different, the bond dipoles will not cancel. Therefore, H₂CO is polar.

2

3

(B) ANS:

$$3 \text{ Ba} \cdot + 2 \cdot \text{N} \cdot \longrightarrow 3 \text{ [Ba]} + 2 \text{ [$:$N$:}]}^{3-}$$

½ per Lewis diagram and 1 point for correct coefficients

PTS: 3 DIF: level 2 REF: page 70 OBJ: 321-4

(C) ANS:

Sodium is a metal and exhibits metallic bonding (1/2). Cations are surrounded by free moving valence electrons (1/2). When struck with a hammer, the cations can shift and the electrons are free to move thus preventing any potential like-like repulsions (1/2). Sodium chloride is an ionic compound that exists as a crystal lattice (1/2). The cations and anions are arranged such that the ions of opposite charges are close to one another to maximize attraction and minimize repulsion (1/2). When stuck with a hammer, it is possible that ions of like charge will come in close contact causing repulsion. The ionic compound will break along this line of repulsion. (1/2)

PTS: 3 DIF: level 2 REF: page 70, 76 OBJ: 321-8

(D) ANS:

Answer

i. Either

or, more specifically,

(or Lewis diagrams; 1 point per diagram)

PTS: 2 DIF: level 3 REF: page 60 OBJ: 321-4

ii. In both substances, the molecules have 26e- each (isoelectronic) and are polar (1); however, C_2H_5OH molecules will experience hydrogen bonding force due to the highly polar O-H bond (1). C_2H_5OH has a higher boiling point and melting point than CH_3OCH_3 . (1)

Assign marks if explanation is correct based on student diagrams even if incorrect.

PTS: 3 DIF: level 3 REF: page 66, OBJ: 321-8

43. (A) ANS: $\begin{array}{c} \mathsf{CH_3} \\ \mathsf{H_2C} \\ \mathsf{H_3C-CH_2-CH-CH-CH=CH_2} \end{array}$

(i)

2

3

$$\mathsf{CH}_3 -\!\!\!- \mathsf{CH}_2 -\!\!\!\!- \mathsf{CH}_2 -\!\!\!\!- \mathsf{CH}_2 -\!\!\!\!- \mathsf{O} -\!\!\!\!- \mathsf{CH}_2 -\!\!\!\!- \mathsf{CH}_3$$
 (ii)

2

$$\begin{array}{c|c} \mathsf{CH_3} & \mathsf{CH_3} \\ & | & | \\ & \mathsf{CH_3} -\!\!\!\!\!- \mathsf{CH_2} -\!\!\!\!\!- \mathsf{CH} -\!\!\!\!\!- \mathsf{CH} -\!\!\!\!\!- \mathsf{CH_2} -\!\!\!\!\!- \mathsf{OH} \\ \text{(iii)} \end{array}$$

2

PTS: 6

DIF: Level 2 REF: 92, 94 and 104

OBJ: 319-5, 319-6 and 319-7

(B) ANS:

Reaction1:

Reaction 2:

2-butene

2,3-dichlorobutane

Reaction 3:

1-butene

Award 1 point per correct structural formula = total 4 points

PTS: 4 DIF: level 3 REF: page 104, 106 OBJ: 319-5,7

(C) ANS:

(i) 5-ethyl-3-methyl-2-heptene

2

(ii) 1-methyl-2,4-diethylbenzene or 2,4-diethyl-1-methylbenzene

2

(iii) 1-bromo-3-iodocyclopentane

2

- PTS: 6
- DIF: level 2
- REF: page 92, 100 OBJ: 319-5,7