Chemistry 2202 Common Exam 2010

Answer Section

MULTIPLE CHOICE

1. ANS: B

PTS: 1
DIF: level 1
REF: page 24
OBJ: 115-3
2. ANS: C

PTS: 1
DIF: level
REF: page 24
OBJ: 115-3
3. ANS: D

PTS: 1
DIF: level 2
REF: page 24 OBJ: 115-3
4. ANS: C

PTS: 1
DIF: level 2
REF: page 26 OBJ: 323-1
5. ANS: A

PTS: 1
DIF: level 2
REF: page 30, (STSE)page 115
OBJ: 323-1, (STSE)323-12
6. ANS: D

PTS: 1 OBJ: 213-5
7. ANS: D

PTS: 1
DIF: level 1
REF: page 32 OBJ: 213-5
8. ANS: B

PTS: 1
DIF: level 1
REF: page 32 OBJ: 213-5
9. ANS: B

PTS: 1
DIF: level 1
REF: page 32
OBJ: 213-5
10. ANS: B

PTS: 1
DIF: level 2
REF: page 32
OBJ: 213-5
11. ANS: B

PTS: 1
DIF: level 1
REF: page 34 OBJ: 213-5
12. ANS: A

PTS: 1
DIF: level 3
REF: page 34 OBJ: 213-5
13. ANS: C

PTS: 1
DIF: level 2
REF: page 36
OBJ: 323-10
14. ANS: A

PTS: 1
DIF: level 2
REF: page 38
OBJ: 323-10
15. ANS: A

PTS: 1
OBJ: 323-11
16. ANS: A

PTS: 1
DIF: level 1
REF: page 40 OBJ: 323-11
17. ANS: C

PTS: 1
DIF: level 1
REF: page 40-41 OBJ: 323-11
18. ANS: A

PTS: 1 OBJ: 323-11
19. ANS: D

PTS: 1 OBJ: 321-7

	$\begin{aligned} & \text { ANS: B } \\ & \text { OBJ: } 321-4 \end{aligned}$	PTS:		DIF:	Level 1	REF:	
21.	ANS: A OBJ: 321-4	PTS:		DIF:	Level 2	REF:	
22.	ANS: B OBJ: 321-11	PTS:		DIF:	Level 1	REF:	
23.	ANS: D OBJ: 321-11	PTS:		DIF:	Level 2	REF:	
24.	$\begin{aligned} & \text { ANS: A } \\ & \text { OBJ: } 114-2 \end{aligned}$	PTS:		DIF:	Level 2	REF:	60
25.	$\begin{aligned} & \text { ANS: A } \\ & \text { OBJ: } 321-5 \end{aligned}$	PTS:		DIF:	Level 1	REF:	62
26.	$\begin{aligned} & \text { ANS: C } \\ & \text { OBJ: } 321-5 \end{aligned}$	PTS:		DIF:	Level 2	REF:	
27.	$\begin{aligned} & \text { ANS: D } \\ & \text { OBJ: } 321-5 \end{aligned}$	PTS:		DIF:	Level 1	REF:	64
28.	$\begin{aligned} & \text { ANS: C } \\ & \text { OBJ: } 321-4 \end{aligned}$	PTS:		DIF:	Level 1	REF:	68
29.	ANS: C OBJ: 321-4	PTS:	1	DIF:	Level 1	REF:	70
30.	ANS: A OBJ: 323-7	PTS:	1	DIF:	Level 3	REF:	74
31.	$\begin{aligned} & \text { ANS: D } \\ & \text { OBJ: } 214-2 \end{aligned}$	PTS:	1	DIF:	Level 2	REF:	72
32.	ANS: A OBJ: 319-4	PTS:		DIF:	Level 1	REF:	82
33.	ANS: B OBJ: 319-7	PTS:		DIF:	Level 1	REF:	86
34.	$\begin{aligned} & \text { ANS: C } \\ & \text { OBJ: } 319-7 \end{aligned}$	PTS:		DIF:	Level 1	REF:	86 and 88
35.	$\begin{aligned} & \text { ANS: D } \\ & \text { OBJ: } 319-7 \end{aligned}$	PTS:		DIF:	Level 2	REF:	90
36.	$\begin{aligned} & \text { ANS: B } \\ & \text { OBJ: } 319-8 \end{aligned}$	PTS:	1	DIF:	Level 1	REF:	96
37.	$\begin{aligned} & \text { ANS: C } \\ & \text { OBJ: } 319-7 \end{aligned}$	PTS:	1	DIF:	Level 1	REF:	104
38.	$\begin{aligned} & \text { ANS: A } \\ & \text { OBJ: } 319-7 \end{aligned}$	PTS:	1	DIF:	Level 2	REF:	104
39.	ANS: C OBJ: 319-8	PTS:	1	DIF:	Level 3	REF:	106

40. ANS: D
PTS: 1
DIF: Level 3
REF: 106
OBJ: 319-8
\qquad

SHORT ANSWER

41. ANS:
(A) Novium-272: $271.853 \mathrm{amu} \times 0.7069=192.17 \mathrm{amu}$
$\begin{array}{ll}\text { Novium-276: } 275.985 \mathrm{amu} \times 0.1771=48.88 \mathrm{amu} & 1 / 2\end{array}$
$\begin{array}{ll}\text { Novium-280: } 279.859 \mathrm{amu} x 0.1160=32.46 \mathrm{amu} & 1 / 2\end{array}$
Average Atomic Mass of Novium $=(192.17+48.88+32.46)=273.5 \mathrm{amu} \quad 11 / 2$
(B) $\quad \mathrm{M}_{\mathrm{C} 2 \mathrm{H} 5 \mathrm{COOH}}=3 \times 12.01 \mathrm{~g} / \mathrm{mol}=36.03 \mathrm{~g} / \mathrm{mol}$ $6 \times 1.01 \mathrm{~g} / \mathrm{mol}=6.06 \mathrm{~g} / \mathrm{mol}$ $2 \times 16.00 \mathrm{~g} / \mathrm{mol}=32.00 \mathrm{~g} / \mathrm{mol}$
$74.09 \mathrm{~g} / \mathrm{mol}$
$\mathrm{n}=\mathrm{m} / \mathrm{M}=3.45 \mathrm{~g} / 74.09 \mathrm{~g} / \mathrm{mol}=0.0466$ moles $\quad 1$
\#particles $=\mathrm{nN}_{\mathrm{a}}=(0.0472$ moles $)\left(6.02 \times 10^{23}\right.$ particles $/$ mole $)=2.80 \times 10^{22}$ molecules 1
(C) Assume 100 grams, thus 43.64 grams of P and 56.36 g of O
$\begin{array}{ll}\mathrm{n}_{\mathrm{P}}=\mathrm{m} / \mathrm{M}=43.64 \mathrm{~g} / 30.97 \mathrm{~g} / \mathrm{mol}=1.409 \text { moles } & 1 / 2\end{array}$
$\begin{array}{ll}\mathrm{n}_{\mathrm{O}}=\mathrm{m} / \mathrm{M}=56.36 \mathrm{~g} / 16.00 \mathrm{~g} / \mathrm{mol}=3.523 \text { moles } & 1 / 2\end{array}$
$1.409 / 1.409: 3.523 / 1.409=1: 2.5$ (multiply by 2) $2: 5 \quad 1 / 2$
thus we get $\mathrm{P}_{2} \mathrm{O}_{5}$ which has a molar mass of $141.94 \mathrm{~g} / \mathrm{mol} \quad 1 / 2$
$\begin{aligned} & \mathrm{M}_{\mathrm{P} 2 \mathrm{O} 5}=2 \times 30.97 \mathrm{~g} / \mathrm{mol}= 61.94 \mathrm{~g} / \mathrm{mol} \\ & 5 \times 16.00 \mathrm{~g} / \mathrm{mol}= \underline{80.00 \mathrm{~g} / \mathrm{mol}} \\ & 141.94 \mathrm{~g} / \mathrm{mol}\end{aligned}$
$283.88 \mathrm{~g} / \mathrm{mol} / 141.94 \mathrm{~g} / \mathrm{mol}=2$, thus our molecular formula is twice as large
Answer: molecular formula is $\mathrm{P}_{4} \mathrm{O}_{10}$
(D) (i)ANS:

Mass of sample + vial	15.6 g
Mass of empty vial	10.4 g
Mass of sample	5.2 g

$$
\begin{array}{rlr}
\mathrm{M} & =39.10+54.94+4(16.00)=158.04 \mathrm{~g} / \mathrm{mol} & 1 \\
\mathrm{n} & =\frac{\mathrm{m}}{\mathrm{M}}=\frac{5.2 \mathrm{~g}}{158.04 \mathrm{~g} / \mathrm{mol}}=0.0329031 \mathrm{~mol} & 1 \\
\mathrm{C} & =\frac{\mathrm{n}}{\mathrm{v}}=\frac{0.0329031 \mathrm{~mol}}{1.500 \mathrm{~L}}=0.0219354 \mathrm{~mol} / \mathrm{L}=0.022 \mathrm{~mol} / \mathrm{L} & 1
\end{array}
$$

(ii) Use a balance and weigh boat, obtain 5.2 g of solute.

Dissolve in a large (1000 mL) beaker containing about 750 mL of water.
Stir with glass stirring rod to dissolve.
Transfer to 1.5 L volumetric flask using a funnel and stirring rod.
Rinse beaker rod and funnel thoroughly into the flask.
Stopper flask and invert several times to ensure homogeneity.
(E) Calculate solution concentration: $\left[\mathrm{CaCl}_{2}\right]=0.26 \mathrm{M} \mathrm{x}^{1 / 2}=0.13 \mathrm{M}$

Find moles of $\mathrm{CaCl}_{2}: 0.13 \mathrm{Mx} 4.0 \mathrm{~L}=0.52 \mathrm{~mol}$
Mass of $\mathrm{CaCl}_{2}: \mathrm{n} \times \mathrm{M}=0.52 \mathrm{~mol} \times 110.98 \mathrm{~g} / \mathrm{mol}=58 \mathrm{~g}$
PTS: 3
DIF: level 3
REF: page 40
OBJ: 323-11
(F)
$\mathrm{n}_{\mathrm{NH}_{3}}=\frac{\mathrm{m}}{\mathrm{M}}=\frac{154 \mathrm{~g}}{17.04 \mathrm{~g} / \mathrm{mol}}=9.0375587 \mathrm{~mol} \mathrm{NH}_{3}$
$\mathrm{n}_{\mathrm{H}_{2}}=\mathrm{n}_{\mathrm{NH}_{3}} \times \frac{\mathrm{W}}{\mathrm{G}}=9.0375587 \mathrm{~mol} \mathrm{NH}_{3} \times \frac{3 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mol} \mathrm{NH}_{3}}=13.556338 \mathrm{~mol} \mathrm{H}_{2}$
$\mathrm{v}=\mathrm{n} \times \mathrm{V}_{\mathrm{STP}}=13.556338 \mathrm{~mol} \mathrm{H}_{2} \times 22.4 \mathrm{~L} / \mathrm{mol}=303.66197 \mathrm{~L}=304 \mathrm{~L}$
PTS: 3 DIF: level 2 REF: page 38 OBJ: 323-11
(G)

$$
\begin{aligned}
& 2 \mathrm{AgNO}_{3(\mathrm{aq})}+\mathrm{CaCl}_{2(\mathrm{aq})} \rightarrow 2 \mathrm{AgCl}_{(\mathrm{s})}+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})} \\
& \mathrm{n}_{\mathrm{AgNO}_{3}}=\mathrm{C} \times \mathrm{v}=0.075 \mathrm{~L} \times 1.25 \mathrm{~mol} / \mathrm{L}=0.09375 \mathrm{~mol} \\
& \mathrm{n}_{\mathrm{CaCl}_{2}}=\mathrm{C} \times \mathrm{v}=0.075 \mathrm{~L} \times 0.775 \mathrm{~mol} / \mathrm{L}=0.058125 \mathrm{~mol} \\
& \mathrm{n}_{\mathrm{AgNO}_{3}}=0.058125 \mathrm{~mol} \mathrm{CaCl}_{2} \times \frac{2 \mathrm{~mol} \mathrm{AgNO}_{3}}{1 \mathrm{~mol} \mathrm{CaCl}_{2}}=0.11625 \mathrm{~mol} \mathrm{AgNO}_{3} \\
& \mathrm{n}_{\mathrm{CaCl}_{2}}=0.09375 \mathrm{~mol} \mathrm{AgNO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{CaCl}_{2}}{2 \mathrm{~mol} \mathrm{AgNO}_{3}}=0.046875 \mathrm{~mol} \mathrm{CaCl}_{2}
\end{aligned}
$$

Since the amount of AgNO_{3} available (0.09375) is less than the amount required (0.11625), it is limiting.

Points breakdown: $1 / 2$ per mol calculation, 1 per mole ratio calculation, 1 for correct conclusion
42. (A) ANS:

(i)			Points: Award 1 for individual Lewis diagrams and 1 for correct Lewis diagram for molecule $=2$
(ii)		Trigonal Planar	1 for shape diagram 1 for name of shape

(iii) Yes. Since the electronegativities of hydrogen and oxygen are different, the bond dipoles will not cancel. Therefore, $\mathrm{H}_{2} \mathrm{CO}$ is polar.
(B) ANS:
$3 \dot{\mathrm{Ba}} \cdot+2 \cdot \stackrel{\bullet}{\mathrm{~N}} \cdot \longrightarrow 3[\mathrm{Ba}]^{2+}+2[: \stackrel{\circ}{\mathrm{N}}:]^{3-}$
$1 / 2$ per Lewis diagram and 1 point for correct coefficients
PTS: 3
DIF: level 2
REF: page 70
OBJ: 321-4
(C) ANS:

Sodium is a metal and exhibits metallic bonding (1/2). Cations are surrounded by free moving valence electrons (1/2). When struck with a hammer, the cations can shift and the electrons are free to move thus preventing any potential like-like repulsions (1/2). Sodium chloride is an ionic compound that exists as a crystal lattice (1/2). The cations and anions are arranged such that the ions of opposite charges are close to one another to maximize attraction and minimize repulsion (1/2). When stuck with a hammer, it is possible that ions of like charge will come in close contact causing repulsion. The ionic compound will break along this line of repulsion. (1/2)

PTS: 3
DIF: level 2
REF: page 70, 76 OBJ: 321-8
(D) ANS:

Answer
i. Either

or
or, more specifically,

and

(or Lewis diagrams; 1 point per diagram)
PTS: 2 DIF: level 3 REF: page 60 OBJ: 321-4
ii. In both substances, the molecules have 26e- each (isoelectronic) and are polar (1); however, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ molecules will experience hydrogen bonding force due to the highly polar O-H bond (1). $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ has a higher boiling point and melting point than $\mathrm{CH}_{3} \mathrm{OCH}_{3}$. (1)

Assign marks if explanation is correct based on student diagrams even if incorrect.
PTS: 3 DIF: level 3 REF: page 66, OBJ: 321-8
43. (A) ANS:

$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(ii)

PTS: 6 DIF: Level 2 REF: 92, 94 and 104
OBJ: 319-5, 319-6 and 319-7
(B) ANS:

Reaction1:

Reaction 2:

Reaction 3:

1-butene
Award 1 point per correct structural formula $=$ total 4 points
PTS: 4
DIF: level 3
REF: page 104, 106
OBJ: 319-5,7
(C) ANS:
(i) 5-ethyl-3-methyl-2-heptene
(ii) 1-methyl-2,4-diethylbenzene or 2,4-diethyl-1-methylbenzene 2
(iii) 1-bromo-3-iodocyclopentane 2

PTS: 6
DIF: level 2 REF: page 92, 100 OBJ: 319-5,7

