CHEMISTRY 2202
SAMPLE EXAMINATION
June, 2008

ANSWER KEY

Note: Shaded items indicate a Core Lab or STSE outcome

PART I - Multiple Choice

Item	Answer	Level	$\begin{aligned} & \text { SCO } \\ & \text { Page } \end{aligned}$
1	C	1	24
2	A	1	24
3	D	1	26
4	C	2	26
5	A	1	26
6	D	3	28
7	D	2	30
8	B	2	30
9	C	2	30
10	B	1	34
11	D	1	32
12	A	1	32
13	A	1	32
14	A	1	34
15	D	2	32
16	A	2	32
17	B	2	36
18	B	1	48
19	C	1	56,70
20	B	2	58

Item	Answer	Level	$\begin{aligned} & \text { SCO } \\ & \text { Page } \end{aligned}$
21	C	2	58
22	D	2	60
23	D	2	60
24	C	1	58
25	A	2	62
26	D	3	62
27	C	1	62
28	A	2	64
29	B	1	70
30	D	1	68
31	B	2	64
32	A	1	84
33	A	1	92
34	B	2	88
35	B	1	104
36	B	1	104
37	A	2	104
38	C	1	96
39	B	3	106
40	B	3	108

PART II - Constructed Response

Item	Marks	Level	$\begin{aligned} & \text { SCO } \\ & \text { Page } \end{aligned}$	Answer
41(a)(i)	4	2	30	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}$
(a)(ii)	2	2	30	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}$
(b)(i)	3	2	32	28.4 g
(b)(ii)	2	2	34	Answers will vary... 1. Measure 28.4 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ on the balance in the weighing dish. 2. Transfer the solid to the beaker with water. 3. Stir with the glass rod to dissolve solid. 4. Decant the solution into the volumetric flask and fill up to the mark with water. 5. Invert solution several times.
(c)	4	2	40	19.5 g
(d)	7	3	26,40	$\mathrm{Na}_{2} \mathrm{SO}_{3}(\mathrm{aq})$
(e)	5	2	40	89.7 g
42(a)(i)	2	2	60	
42(a)(ii)	2	2	60	
42(a)(iii)	1	2	60	pyramidal
42(a)(iv)	1	2	60	polar
42(b)	5	3	60,62	
(c)(i)	3	2	62,66	yes, yes, yes yes, yes, yes yes, no, no

(c)(ii)	3	2	66	Answers will vary... All molecules are pyramidal shaped and polar, thus all have Dipole-Dipole, taking this from being a determining factor. NHF_{2} will have lowest LD, yet being the only one with HB, the strongest force, makes NHF_{2} the highest boiling point. NCl_{3} and NI_{3} are both polar (have DD) while neither have HB . So, between these two molecules, NI_{3} would have many more electrons and thus be stronger in LD force than $\mathrm{NCl}_{3} . \mathrm{NI}_{3}$ has the second strongest set of forces by comparison, and the second highest boiling point. This leaves NCl_{3} as the lowest boiling point.
43(a)(i)	2	2	92,94	2 - ethyl- 2 -methylhexane
43(a)(ii)	2	2	92, 94	4-ethyl-5-methyl-2-hexene
43(a)(iii)	2	2	92, 94	cis - bromochloroethane
(b)(i)	2	2	90,92,104	
(b)(ii)	2	2	90,92,104	
(c)(i)	1	2	96, 102	addition
(c)(ii)	2	2	96, 102	
(d)	3	3	96,106	

